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The laminar wall-jet over a curved surface 
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The laminar flow of a wall jet over a curved surface is considered. A unique simi- 
larity solution is obtained for both concave and convex surfaces when the local 
radius of curvature is proportional to xi. This solution satisfies a similar invariant 
condition to the one derived by Glauert for the wall jet over a plane surface. The 
variation of the shape of the velocity profile, the skin friction, and the surface 
pressure as a function of curvature is given. 

Introduction 
Jets are observed to adhere to and follow the curvature of a solid surface. This 

phenomenon, which is accompanied by a pressure difference across the jet, is 
often referred to in the literature as the Coanda effect. Since this effect has a 
variety of applications, considerable attention was given to its investigation, 
both in theory and experiment, but only turbulent flow was considered. Newman 
(1961), Nakaguchi (1961) and Fekete (1963) investigated the flow of a jet around 
a circular cylinder, while Sawyer (1962) and Guitton (1964) examined the flow 
around a logarithmic spiral as well. Because of its complexity, the flow is hardly 
amenable to theoretical analysis and a large number of assumptions had to be 
introduced to predict some gross properties of the phenomenon. Newman (1961) 
used a momentum integral technique, neglected skin friction, and replaced the 
actual velocity profile with a rectangular one having the same mass and momen- 
tum flux. Nakaguchi (1961) assumed the velocity profiles similar and represented 
by the same function as the free jet in ambient fluid. Sawyer (1962) and Guitton 
(1964) determined the effect of wall curvature on the velocity but they assumed 
the wall to be frictionless. They found that the equations governing the flow of a 
turbulent jet over a logarithmic spiral may be reduced to self-preserving form 
after a suitable assumption relating the shear stress to the mean velocity is 
made. Their analysis, however, is of the perturbation type and only the first- 
order term was obtained. Even then, two empirical constants are required to 
determine the velocity profile. 

The purpose of the present paper is to examine the conditions for which the 
flow of a jet over a curved surface is amenable to analysis with the smallest num- 
ber of ad hoc assumptions and to obtain a solution satisfying these conditions. 
The flow considered is laminar, incompressible and two-dimensional. The jet is 
immersed in an identical ambient fluid which is at rest. 
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Analysis 
The equations of motion and continuity for two-dimensional incompressible, 

laminar flow along a curved wall expressed in curvilinear orthogonal co-ordinates 
are (Goldstein 1938): 

(1) 2 aa g aRac -- ti 

F+<[(1+9a] a2 ay = 0, (3) 

where 5 and y" are the co-ordinates parallel and normal to the surface respectively, 
.ii is the velocity along the Z-axis while v" is perpendicular to it and 8 ( 2 )  represents 
the local radius of curvature of the wall. When R > 0 the wall is convex outwards 
and when 8 < 0 the wall is concave. 

If one assumes a characteristic jet width, 6, small in comparison with 8 and 
no large variations in curvature occur so that d81d2 is of order unity, the above 
equations may be simplified by retaining terms to order 6 in the first and third 
equation and to order unity in the second equation. Neglecting higher order 
terms in the second equation is consistent with the rest of the analysis since the 
latter equation is integrated across the jet to obtain a$j/a2; thus it is further re- 
duced by order 6. 

After defining dimensionless variables 

one may write equations (1) t o  (3) as 

au uv ap y a2u 1 au 
u-+ 1+- v-+-=--+ 1+- -+--, 
ax R ay R ax ( 4 aY2 Ray au ( ") 

" + q ( l + g ) V j  ax ay = 0, 

u2 9 
R= ay' 

where U is a constant reference velocity. 
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The boundary conditions representative of the flow of a jet over a surface are 

y = o ,  u = v = o *  

y+0O, u = 0. ’} 
In  search for similarity a stream function may be defined by 

(7 )  

where @ = xmf(y); y = cy/xn and the radius of curvature R = m n .  

Equation (4) becomes 

where (5) was used to express the pressure term as a function of the velocity field 
and the radius of curvature. For similar solutions to exist the equation should 
become independent of x, which leads to the requirement 

m + n =  1. (9) 

Thus one relation between the similarity exponents has been determined and 
one more relation is required. 

A second relation cannot be obtained by any simple principle such as the con- 
stancy of momentum flux. For the case of a wall jet over an infinite flat plate, 
Glauert (1956) derived an integral invariant by considering the exterior mo- 
mentum flux and this invariant gave a second relation between the similarity 
exponents. An analogous procedure is adopted here. 

Consider the integral of (4) with respect to y between the limits of y and co and 
use the condition that u+O as y+w. Then, using the continuity equation, one 
obtains 

Multiplying by u, integrating with respect to y from 0 to 00, and simplifying gives 

An invariant is obtained if 

or, in terms of the similarity variables, if 
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Provided (13) is satisfied, then 
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In  the case of a similarity solution, (14) shows that 

n = 3m, 

and a second relation between the similarity exponents has been obtained. 
Thus m = $ and n = 3. Equation (8) may now be rewritten 

f”’ +.f” + 2(f‘)2 

where the value of c was chosen as $ in order that the equation will reduce to that 
of Glauert as CI + co. 

The validity of (13) may be established as follows. Integrate (16) with respect 
to 7 between the limits 0 and 00 to obtain 

If one multiplies (13) by 161~1, uses the derived values of c and n, and substitutes 
for the double integral term from (17), the left-hand side of (13) takes the form 

which when integrated by parts using the boundary conditions can be shown to 
be identically zero. Therefore, (16) satisfies the restriction and an invariant is 
obtained from (13) in the following dimensional form: 

The constancy of 3’ is strictly dependent on the velocity profiles being similar, 
whereas the existence of the corresponding invariant for flow over a flat surface 
(Glauert 1956) is not dependent on similarity. Although the similarity solution is 
self-consistent, the conditions under which P is invariant appear to be far more 
restrictive than those required for invariants in classical similarity solutions 
like the plane wall-jet or a free jet. 

The integral term in (16) was removed by differentiation to yield 

= 0, (19) 
(1 + (4 /4r )  

+ 
with the boundary conditionf(0) =f’(O) =f’(co) = 0 and a compatibility con- 
dition a t  the wall 

(20) 
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If f(7) is a solution satisfying the boundary conditions, so is g(7) = Af(A7) for 
an arbitrary constant A .  However, since the reference velocity, U ,  is undeter- 
mined, the solution may be normalized such that ~ ( c o )  = 1, without a loss of 
generality. 

Results and discussion 
Equation (19) was solved numerically using a variable step RungeKutta 

method. The variation off’ with q is illustrated in figure 1 with 4/a as the para- 
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FIGURE 1. Variation of the velocity profile with pressure gradient. 

meter of each curve. When 41a > 0, the surface is convex and the jet is subjected 
to an adverse pressure gradient. Conversely, when 4/a < 0, the surface is con- 
cave and the pressure gradient is favourable. Glauert’s (1956) solution of the wall 
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jet over a plane surface is obtained as a special case when 41" = 0. As 41a in- 
creases the jet becomes wider, the velocity profile develops an inflexion point 
near the wall and the skin friction, which is represented by f"(O), is reduced 
(figure 2). The separation profile is obtained when 4/a N 0.075. The value of 7, 

41a 

FIGURE 2. Variation of some properties of the flow with pressure gradient. 

rim, corresponding to the maximum value of f' and qmI2, corresponding to 
one-half of the maximum value o f f '  on the far side from the wall represent 
characteristic widths of the velocity profile and are plotted in figure 2. The pres- 
sure difference across the jet, which in this case is inversely proportional to x, is 
also plotted on the figure. 

The arbitrary reference velocity may be determined by using the invariant 
F from (18). The value of F/v2U as a function of the curvature parameter, 4/a, 
was determined by evaluating the integral numerically and the results are 
plotted in figure 2. Should the similarity solution be verified by an appropriate 
experiment, the value of F could be determined directly from the measured velo- 
city profiles after the wall jet has achieved a similar state. The reference velocity 
would then be determined and the results of the analysis presented here could be 
used to predict the behaviour of the downstream development of the flow. 

The validity of the order of magnitude approximations used in simplifying 
the equations of motion will now be considered. If the characteristic jet width 
is defined as the distance from the wall to the location of the velocity maximum, 
then 6 = y m / R  = (4/a)qm. The largest value of 6is 0-328 and this occurs at  separa- 
tion. Consequently, neglecting terms of order S2 muy lead to an error of about 
10%. One may also consider terms like (uv/R)/(v&/ay) which, according to the 
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order of magnitude approximations, should be of order 6. From the similarity 

4 f '  4 solution it can be shown 

except near the velocity maximum wheref"(7,) = 0. At separation, 4/a M 0.075, 
and if S 5 O( 14/a1), then the terms dropped may be of order of 1 yo. 

The present analysis may serve as a basis for an approximate method of solu- 
tion for a wall jet over an arbitrary surface in much the same way as the Falkner- 
Skan solution does in the boundary layer case. 

The authors wish to thank Dr T. J. Pedley for reading the manuscript. 
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